

ReNamer's
User Manual

Denis Kozlov

September 2008

 2

Table of Contents

Table of Contents ... 2

Introduction .. 3

Description ... 3

Basic usage... 3

Help notes... 3

Quick Start.. 4

Rules... 6

Date-Time Format .. 8

Pascal Script ... 10

Standard types available... 10

Custom types/variables/constants .. 10

Registered functions... 10

Regular Expressions... 16

Simple matches .. 16

Escape sequences ... 16

Character classes .. 17

Predefined Classes.. 17

Word/Text Boundaries ... 18

Iterators... 18

Alternatives .. 19

Subexpressions, Backreferences, Substitution ... 20

RegEx Examples .. 20

Command Line... 22

Parameters .. 22

Examples .. 22

 3

Introduction

Description

ReNamer is a very powerful and flexible file renaming tool. It offers all of the standard

renaming procedures, including prefixes, suffixes, replacements, case changes, remove

contents of brackets, add number sequences, change file extensions, etc. It has an ability to

rename folders and network files, process Regular Expressions, and supports Unicode

filenames. For advanced users, there is a PascalScript rule, which let users program their very

own renaming rule.

The program allows you to combine multiple renaming actions as a rule set, applying each

action in logical sequence, which can be saved, loaded and managed within the program. In

addition, ReNamer is able to extract large variety of meta tags, such as: ID3v1, ID3v2, EXIF,

OLE, AVI, MD5, SHA1, CRC32 and many more.

Basic usage

Step 1: "Add Files" or "Add Folders" – Add files/folders to the table;

Step 2: "Rules" – Setup rules, their parameters and order;

Step 3: "Preview" – Generate new names using rules;

Step 4: "Rename" – Rename your files.

Help notes

This collection of help documents is yet to be expanded. More help could be found on forums

and in the “downloads” section. Unfortunately, I do not have enough free time to create,

expand and maintain this document, so if you wish to contribute by creating new or/and

expending already existing sections – you are more than welcomed to do so. Any

contributions will be greatly appreciated!

 4

Quick Start

 Click on the ReNamer icon to start the program.

The window shown below - is where you will do most of your processing. It consists of two

toolbars which control the Files and Rules. The Rules Area is used to specify the processing

for your name changes, and the Files Area is used for displaying the Input & Output file

names.

You create the Rules, which are then used to change the file names. You get to choose the

Rules you need and configure them to do what you want. Your Rules can be added, edited,

deleted, and moved up or down in the processing sequence. There are four basic steps to

processing files in ReNamer. These steps are performed using the several buttons that are

explained in the table below.

The file names are displayed both "before" and "after" the name change.

 5

Select the files that you wish to rename. Alternatively, you can drag &

drop or copy & paste your files in to the main window.

Create rules which will change the file names. Once you press the

button, a separate dialog will come up with a list of available rules and

their configuration, as show on the screenshot below:

Manually execute the rules and display the name changes. This step is

not necessary when the "Auto Preview" option is checked (default).

When you are satisfied with the results of all your name changes, you

finalize everything by renaming the files, making your file name

changes permanent.

P.S. Thanks to Lance Smith for helping creating this section.

 6

Rules

ReNamer has an extensive rules set. These rules can be combined together, in a logical

sequence, to perform nearly any thinkable operation with the filename. The table below lists

available rules with a brief description of each of the rule.

Rules Description

Insert

Insert specified text into the filename: as prefix, as suffix, at the specified

position, before or after specified text. This rule has also an option to insert

meta tags into the filename, which are very useful for describing files based on

their contents and other properties, for example: modification or creation time

of the files; artist, title, album and year of mp3 files; date of the digital photos;

image dimensions; title and subject of the documents; version information of

the executable files; and many more.

Delete

Delete a portion of the filename usually defined by character positions: from

the specified position, from the occurrence of the specified delimiter, until

number of characters, until occurrence of the specified delimiter, or till the

end. Rule can be inverted to process filename in a right-to-left manner.

Remove

Remove specified text from the filename: first, last or all occurrences.

Optionally, wildcards can be used within this rule, to remove masked text

fragments.

Replace

Replace rule is very much like Remove rule, with similar options, except

instead of removing the text fragments it will replace them with the specified

text.

Extension
Change extension of files to the specified extension, or to the extension

automatically detected through the internal database of binary signatures.

Strip

Strip characters from the filename. Rule has predefined character sets, like

digits, symbols, brackets, but user can also define his/her own character set.

Every occurrence of each of the specified characters will be removed from the

filename.

Case Change the case of the filename: capitalize, to lower case, to upper case, invert

 7

case, and put only first letter capital (like in a sentence). There is also an

option to force case for the manually entered fragments, for example: CD,

DVD, DJ, etc.

Serialize
Serialize rule uses numeric incremental or random sequences of digits to put

filenames into an order.

CleanUp
Cleanup filenames from/for commonly used naming conventions for internet,

peer-to-peer networks, and other resources.

Translit

Transliterate Non-English characters from different languages into their

English/Latin representation. Useful for preparing files for network storage

and transfer. The mappings of characters have to be specified by user. Several

examples are included in the rule.

RegEx

Stands for Regular Expressions. This is an expert feature, and might look very

confusing for novice users. It is a commonly used concept for complex

pattern/expression matching and replacing operations.

PascalScript

Scripting rule, which allows programming-aware users to code their own

renaming rule using predefined set of functions. This rule uses Pascal/Delphi

programming syntax and conventions. Extremely powerful feature in the right

hands.

UserInput
Rule that simply sets the new names of the files to the names entered in a list

(one name per line).

Warning: some characters are reserved by the operating system, thus, cannot be used in the

name of the file, i.e.: \ / : * ? " < > |

 8

Date-Time Format

Date-Time format is mostly used by the meta tags. You can define almost any thinkable

format for all tags which extract a date-time field from the file. You can change it from within

the Settings. Below is a list of variables which you can use.

Variable Description

d Displays the day as a number without a leading zero (1-31).

dd Displays the day as a number with a leading zero (01-31).

ddd Displays the day as an abbreviation (Sun-Sat).

dddd Displays the day as a full name (Sunday-Saturday).

e
Displays the year in the current period/era as a number without a leading zero

(Japanese, Korean and Taiwanese locales only).

ee
Displays the year in the current period/era as a number with a leading zero

(Japanese, Korean and Taiwanese locales only).

g
Displays the period/era as an abbreviation (Japanese and Taiwanese locales

only).

gg Displays the period/era as a full name. (Japanese and Taiwanese locales only).

m
Displays the month as a number without a leading zero (1-12). If the m

specifier immediately follows an h or hh specifier then minute is displayed.

mm
Displays the month as a number with a leading zero (01-12). If the mm

specifier immediately follows an h or hh specifier then minute is displayed.

mmm
Displays the month as an abbreviation (Jan-Dec) using the strings given by the

ShortMonthNames global variable.

mmmm
Displays the month as a full name (January-December) using the strings given

by the LongMonthNames global variable.

yy Displays the year as a two-digit number (00-99).

yyyy Displays the year as a four-digit number (0000-9999).

h Displays the hour without a leading zero (0-23).

 9

hh Displays the hour with a leading zero (00-23).

n Displays the minute without a leading zero (0-59).

nn Displays the minute with a leading zero (00-59).

s Displays the second without a leading zero (0-59).

ss Displays the second with a leading zero (00-59).

z Displays the millisecond without a leading zero (0-999).

zzz Displays the millisecond with a leading zero (000-999).

am/pm

Uses the 12-hour clock for the preceding h or hh specifier, and displays "am"

for any hour before noon, and "pm" for any hour after noon. The am/pm

specifier can use lower, upper, or mixed case, and the result is displayed

accordingly.

a/p

Uses the 12-hour clock for the preceding h or hh specifier, and displays "a" for

any hour before noon, and "p" for any hour after noon. The a/p specifier can

use lower, upper, or mixed case, and the result is displayed accordingly.

"xx"
Characters enclosed in single or double quotes are displayed as-is, and do not

affect formatting.

For example, if assume that the date is 25-th of October 2007 and the time is 16:59:00, then

sample formats and their outputs would be:

• “dd-mm-yyyy hh.nn.ss” format will produce “25-10-2007 16.59.00”, which is an

easily readable format for the date and time.

• “yyyymmddhhnnss” format will produce “20071025165900”, which is ideal for

serializing files because the filename is relatively short, most probably unique,

contains only digits, and also makes files automatically sorted in chronological order.

 10

Pascal Script

This rule uses Delphi/Pascal programming syntax and conventions. Changes to the FileName

variable will be treated as changes to the New Name of the File. The FilePath constant holds

the original path to the file, and provided for the direct file access. Main code must be within

the "begin" and "end." keywords. User defined procedures, functions, variables, constants

and types are supported, as well as importing of external functions from DLLs.

Do not override registered variables, types and functions listed below. Some of the functions

able to alter your file system, so use those with caution! All manipulations with the FileName

variable should be done using Unicode functions, i.e. WideString type should be used instead

of an ordinary String type.

Standard types available

Byte, ShortInt, Char, Word, SmallInt, Cardinal, LongInt, Integer, String, Real, Double,

Single, Extended, Boolean, Array, Record, Enumerations, Variant.

Custom types/variables/constants

• var FileName: WideString;

o Name of the currently processing file, including extension (e.g. "file.txt");

• const FilePath: WideString;

o Full path of the currently processing file (e.g. "c:\temp\file.txt");

• type TDateTime = Double;

o Used for manipulating date and time values;

• type TStringsArray = array of WideString;

o Used for storing and manipulating lists/arrays of strings.

Registered functions

 11

*** Basic String Handling Routines ***

procedure Insert(Source: String; var S: String; Index: Integer);

procedure Delete(var S: String; Index, Count: Integer);

function Copy(S: String; Index, Count: Integer): String;

function Pos(Substr: String; S: String): Integer;

*** Length Managing Routines ***

procedure SetLength(var S: Array; NewLength: Integer);

procedure SetLength(var S: String; NewLength: Integer);

procedure SetLength(var S: WideString; NewLength: Integer);

function Length(const S: Array): Integer;

function Length(const S: String): Integer;

function Length(const S: WideString): Integer;

*** Unicode String Handling Routines ***

procedure WideInsert(const Substr: WideString; var Dest: WideString; Index: Integer);

procedure WideDelete(var S: WideString; Index, Count: Integer);

procedure WideSetLength(var S: WideString; NewLength: Integer);

function WideLength(const S: WideString): Integer;

function WideCopy(const S: WideString; Index, Count: Integer): WideString;

function WidePos(const SubStr, S: WideString): Integer;

function WidePosEx(const SubStr, S: WideString; Offset: Cardinal): Integer;

function WideUpperCase(const S: WideString): WideString;

function WideLowerCase(const S: WideString): WideString;

function WideCompareStr(const S1, S2: WideString): Integer;

function WideCompareText(const S1, S2: WideString): Integer;

function WideSameText(const S1, S2: WideString): Boolean;

function WideTextPos(const SubStr, S: WideString): Integer;

function WideTrim(const S: WideString): WideString;

function WideReplaceStr(const S, OldPattern, NewPattern: WideString): WideString;

function WideReplaceText(const S, OldPattern, NewPattern: WideString): WideString;

function WideSplitString(const Input, Delimiter: WideString): TStringsArray;

function WideCaseCapitalize(const S: WideString): WideString;

function WideCaseInvert(const S: WideString): WideString;

*** Meta Tags Extraction ***

 12

function CalculateMetaTag(const FilePath: WideString; const MetaTagName String):

String;

*** Regular Expressions ***

function ReplaceRegEx(const Input, Find, Replace: WideString; const CaseSensitive,

UseSubstitution: Boolean): WideString;

function MatchesRegEx(const Input, Find: WideString; const CaseSensitive: Boolean):

TStringsArray;

function SubMatchesRegEx(const Input, Find: WideString; const CaseSensitive: Boolean):

TStringsArray;

*** Unicode Character Handling Routines ***

function IsWideCharUpper(WC: WideChar): Boolean;

function IsWideCharLower(WC: WideChar): Boolean;

function IsWideCharDigit(WC: WideChar): Boolean;

function IsWideCharSpace(WC: WideChar): Boolean;

function IsWideCharPunct(WC: WideChar): Boolean;

function IsWideCharCntrl(WC: WideChar): Boolean;

function IsWideCharBlank(WC: WideChar): Boolean;

function IsWideCharXDigit(WC: WideChar): Boolean;

function IsWideCharAlpha(WC: WideChar): Boolean;

function IsWideCharAlphaNumeric(WC: WideChar): Boolean;

function WideCharUpper(const WC: WideChar): WideChar;

function WideCharLower(const WC: WideChar): WideChar;

*** Unicode Conversion Routines ***

function WideToAnsi(const WS: WideString): String;

function AnsiToWide(const S: String): WideString;

function UTF8Encode(const WS: WideString): String;

function UTF8Decode(const S: String): WideString;

*** Basic Conversion Routines ***

function IntToStr(Value: Integer): String;

function StrToInt(const S: String): Integer;

function StrToIntDef(const S: String; const Default: Integer): Integer;

function DateToStr(D: TDateTime): String;

 13

function StrToDate(const S: String): TDateTime;

function IntToHex(Value: Integer; Digits: Integer): String;

function HexToInt(const HexNum: String): Integer;

function HexToIntDef(const HexNum: String; Default: Integer): Integer;

function Chr(X: Byte): Char;

function Ord(X: Char): Byte;

*** Date And Time Routines ***

function Date: TDateTime;

function Time: TDateTime;

function Now: TDateTime;

function EncodeDate(Year, Month, Day: Word): TDateTime;

function EncodeTime(Hour, Min, Sec, MSec: Word): TDateTime;

function TryEncodeDate(Year, Month, Day: Word; var Date: TDateTime): Boolean;

function TryEncodeTime(Hour, Min, Sec, MSec: Word; var Time: TDateTime): Boolean;

procedure DecodeDate(const DateTime: TDateTime; var Year, Month, Day: Word);

procedure DecodeTime(const DateTime: TDateTime; var Hour, Min, Sec, MSec: Word);

function DayOfWeek(const DateTime: TDateTime): Word;

function DateTimeToUnix(D: TDateTime): Int64;

function UnixToDateTime(U: Int64): TDateTime;

function FormatDateTime(const fmt: String; D: TDateTime): String;

*** File Management Routines ***

function WideFileSize(const FileName: WideString): Int64;

function WideFileExists(const FileName: WideString): Boolean;

function WideDirectoryExists(const Directory: WideString): Boolean;

function WideForceDirectories(Dir: WideString): Boolean;

function WideCreateDir(const Dir: WideString): Boolean;

function WideDeleteFile(const FileName: WideString): Boolean;

function WideRenameFile(const OldName, NewName: WideString): Boolean;

function WideFileSearch(const Name, DirList: WideString): WideString;

function WideGetCurrentDir: WideString;

function WideSetCurrentDir(const Dir: WideString): Boolean;

procedure WideScanDirForFiles(Dir: WideString; var Files: TStringsArray;

 const Recursive, IncludeHidden, IncludeSystem: Boolean; const Mask: WideString);

 14

procedure WideScanDirForFolders(Dir: WideString; var Folders: TStringsArray;

 const Recursive, IncludeHidden, IncludeSystem: Boolean);

*** File Name Utilities ***

function WideExtractFilePath(const FileName: WideString): WideString;

function WideExtractFileDir(const FileName: WideString): WideString;

function WideExtractFileDrive(const FileName: WideString): WideString;

function WideExtractFileName(const FileName: WideString): WideString;

function WideExtractBaseName(const FileName: WideString): WideString;

function WideExtractFileExt(const FileName: WideString): WideString;

function WideChangeFileExt(const FileName, Extension: WideString): WideString;

function WideStripExtension(const FileName: WideString): WideString;

function WideExpandFileName(const FileName: WideString): WideString;

function WideExtractRelativePath(const BaseName, DestName: WideString): WideString;

function WideExtractShortPathName(const FileName: WideString): WideString;

function WideIncludeTrailingPathDelimiter(const S: WideString): WideString;

function WideExcludeTrailingPathDelimiter(const S: WideString): WideString;

function WideSameFileName(const S1, S2: WideString): Boolean;

function WideGetEnvironmentVar(const VarName: WideString): WideString;

*** File Read/Write Routines ***

function FileReadFragment(const FileName: WideString; Start, Length: Integer): String;

function FileReadLine(const FileName: WideString; LineNum: Integer): String;

function FileCountLines(const FileName: WideString): Integer;

function FileReadContent(const FileName: WideString): String;

procedure FileWriteContent(const FileName: WideString; const Content: String);

procedure FileAppendContent(const FileName: WideString; const Content: String);

*** File Properties Routines ***

function FileTimeModified(const FileName: WideString): TDateTime;

function FileTimeCreated(const FileName: WideString): TDateTime;

function SetFileTimeCreated(const FileName: WideString; const DateTime: TDateTime):

Boolean;

function SetFileTimeModified(const FileName: WideString; const DateTime: TDateTime):

Boolean;

 15

*** Process Execution Routines ***

function ExecuteProgram(const Command: String; WaitForProgram: Boolean): Cardinal;

function ExecConsoleApp(const CommandLine: String; out Output: String): Cardinal;

*** Interactive Dialogs ***

procedure ShowMessage(const Msg: String);

procedure WideShowMessage(const Msg: WideString);

function DialogYesNo(const Msg: String): Boolean;

function WideDialogYesNo(const Msg: WideString): Boolean;

function InputBox(const ACaption, APrompt, ADefault: String): String;

function InputQuery(const ACaption, APrompt: String; var Value: String): Boolean;

function WideInputBox(const ACaption, APrompt, ADefault: WideString): WideString;

function WideInputQuery(const ACaption, APrompt: WideString; var Value: WideString):

Boolean;

*** Other Routines ***

procedure Randomize();

procedure Sleep(Milliseconds: Cardinal);

procedure DivMod(Dividend: Integer; Divisor: Word; var Result, Remainder: Word);

procedure SetClipboardText(const S: WideString);

function GetClipboardText: WideString;

function RandomRange(const AFrom, ATo: Integer): Integer;

function Base64Encode(const S: String): String;

function Base64Decode(const S: String): String;

function GetTickCount: Cardinal;

function SizeOf(X): Integer;

For more information:

• www.delphibasics.co.uk

o Good Delphi related site which has some useful and easy to understand

tutorials and reference guide.

• www.remobjects.com

o RemObjects is a software development company that offers this great

PascalScript component, which allows run-time scripting.

 16

Regular Expressions

Regular Expressions are a widely-used method of specifying patterns of text to search for.

Special metacharacters allow you to specify, for instance, that a particular string you are

looking for occurs at the beginning or end of a line, or contains n recurrences of a certain

character. Regular expressions look ugly for novice users, but they are very powerful tools.

Simple matches

Any single character matches itself, unless it is a metacharacter with a special meaning

described below. You can cause characters that normally function as metacharacters or escape

sequences to be interpreted literally by "escaping" them by preceding them with a backslash

"\", for instance: metacharacter "^" match beginning of string, but "\^" match character "^",

"\\" match "\" and so on.

foobar matches string "foobar"

\^FooBarPtr matches "^FooBarPtr"

Escape sequences

Characters may be specified using a escape sequences syntax much like that used in C and

Perl: "\n" matches a new line, "\t" a tab, etc. More generally, "\xnn", where "nn" is a string of

hexadecimal digits, matches the character whose ASCII value is nn. If You need wide

(Unicode) character code, You can use "\x{nnnn}", where "nnnn" - one or more hexadecimal

digits.

\xnn char with hex code nn

\x{nnnn} two bytes char with hex code nnnn (unicode)

\t tab (HT/TAB), same as \x09

\n new line (NL), same as \x0a

 17

\r carriage return (CR), same as \x0d

\f form feed (FF), same as \x0c

foo\x20bar matches "foo bar" (note space in the middle)

\tfoobar matches "foobar" predefined by tab

Character classes

You can specify a character class, by enclosing a list of characters in [], which will match any

one character from the list. If the first character after the "[" is "^", the class matches any

character not in the list. Within a list, the "-" character is used to specify a range, so that a-z

represents all characters between "a" and "z", inclusive. If you want "-" itself to be a member

of a class, put it at the start or end of the list, or escape it with a backslash. If you want ']' you

may place it at the start of list or escape it with a backslash.

[-az] matches "a", "z" and "-"

[a\-z] matches "a", "z" and "-"

[a-z] matches all twenty six small characters from "a" to "z"

[\n-\x0D] matches any of #10,#11,#12,#13

[^0-9] matches any none digit character

[\d-t] matches any digit, '-' or 't'

[]-a] matches any char from ']'..'a'

foob[aeiou]r finds strings "foobar", "foober" etc. but not "foobbr", "foobcr" etc.

foob[^aeiou]r find strings "foobbr", "foobcr" etc. but not "foobar", "foober" etc.

Predefined Classes

\w an alphanumeric character (including "_")

 \W a non-alphanumeric

\d a numeric character

 18

\D a non-numeric

\s any space (same as [\t\n\r\f])

\S a non space

. any character in line (the symbol is just a dot)

Word/Text Boundaries

A word boundary (\b) is a spot between two characters that has a \w on one side of it and a \W

on the other side of it (in either order), counting the imaginary characters off the beginning

and end of the string as matching a \W.

\b word boundary

\B not word boundary

\A start of text (“^” is an alternative)

\Z end of text (“$” is an alternative)

Iterators

Any item of a regular expression may be followed by another type of metacharacters -

iterators. Using this metacharacters You can specify number of occurrences of previous

character, metacharacter or subexpression. So, digits in curly brackets of the form {n,m},

specify the minimum number of times to match the item n and the maximum m. The form {n}

is equivalent to {n,n} and matches exactly n times. The form {n,} matches n or more times. A

little explanation about "greediness". "Greedy" takes as many as possible, "non-greedy" takes

as few as possible. For example, 'b+' and 'b*' applied to string 'abbbbc' return 'bbbb', 'b+?'

returns 'b', 'b*?' returns empty string, 'b{2,3}?' returns 'bb', 'b{2,3}' returns 'bbb'.

* zero or more ("greedy"), similar to {0,}

+ one or more ("greedy"), similar to {1,}

? zero or one ("greedy"), similar to {0,1}

 19

{n} exactly n times ("greedy")

{n,} at least n times ("greedy")

{n,m} at least n but not more than m times ("greedy")

*? zero or more ("non-greedy"), similar to {0,}?

+? one or more ("non-greedy"), similar to {1,}?

?? zero or one ("non-greedy"), similar to {0,1}?

{n}? exactly n times ("non-greedy")

{n,}? at least n times ("non-greedy")

{n,m}? at least n but not more than m times ("non-greedy")

foob.*r matches strings like 'foobar', 'foobalkjdflkj9r' and 'foobr'

foob.+r matches strings like 'foobar', 'foobalkjdflkj9r' but not 'foobr'

foob.?r matches strings like 'foobar', 'foobbr' and 'foobr' but not 'foobalkj9r'

fooba{2}r matches the string 'foobaar'

fooba{2,}r matches strings like 'foobaar', 'foobaaar', 'foobaaaar' etc.

fooba{2,3}r matches strings like 'foobaar', or 'foobaaar' but not 'foobaaaar'

Alternatives

You can specify a series of alternatives for a pattern using "|" to separate them, so that

fee|fie|foe will match any of "fee", "fie", or "foe" in the target string (as would f(e|i|o)e). The

first alternative includes everything from the last pattern delimiter ("(", "[", or the beginning

of the pattern) up to the first "|", and the last alternative contains everything from the last "|" to

the next pattern delimiter. For this reason, it's common practice to include alternatives in

parentheses, to minimize confusion about where they start and end. Alternatives are tried

from left to right, so the first alternative found for which the entire expression matches, is the

one that is chosen. This means that alternatives are not necessarily greedy. For example: when

matching foo|foot against "barefoot'', only the "foo'' part will match, as that is the first

alternative tried, and it successfully matches the target string. (This might not seem important,

but it is important when you are capturing matched text using parentheses.) Also remember

 20

that "|" is interpreted as a literal within square brackets, so if You write [fee|fie|foe] You're

really only matching [feio|].

foo(bar|foo) matchs strings 'foobar' or 'foofoo'

Subexpressions, Backreferences, Substitution

The bracketing construct (...) may also be used to define r.e. subexpressions. Subexpressions

are numbered based on the left to right order of their opening parenthesis. First subexpression

has number '1' (whole r.e. match has number '0'). Metacharacters \1 through \9 are interpreted

as backreferences, and match previously matched subexpression within the expression.

Matched subexpressions can also be accessed in the replace operation using metacharacters

$1 through $9.

(foobar){8,10} matches strings which contain 8, 9 or 10 instances of the 'foobar'

foob([0-9]|a+)r matches 'foob0r', 'foob1r' , 'foobar', 'foobaar', 'foobaar' etc.

(.)\1+ matches 'aaaa' and 'cc'

(.+)\1+ matches 'aaaa', 'cc', 'abab', '123123'

RegEx Examples

Expression Replace Description

(.*) (.*) $2, $1

Switch two words around and put a comma after the

resulting first word. Example: if input string is "John

Smith", then output will be "Smith, John".

\b(\d{2})-(\d{2})-

(\d{4})\b
$3-$2-$1

Find date-alike sequences in a format 25-10-2007, and

invert them into 2007-10-25. Note: "\d" represents any

digit in range of 0-9, so the sequence like 99-99-9999 will

also match the expression.

\[.*?\]
Remove the contents of the [...] (square brackets), and the

brackets too.

 21

For more information:

• www.regular-expressions.info

o Excellent site devoted to regular expressions. Nicely structured and with many

easy-to-understand examples.

• www.regexpstudio.com

o Freeware regular expressions library for Delphi. One can find more detailed

information regarding this particular RegEx engine.

 22

Command Line

Program supports several command line parameters. Different parameter types cannot be

combined together.

Parameters

Parameter Description

<files>

Paths to files and folders which will be automatically added to the program.

Program's default settings will be used for adding folders. Masked paths can

also be used, e.g. "C:\Pictures*.jpg"

/preset

<preset>

<files>

Load preset specified by a preset name or a full path. Optionally, paths to

files/folders can be appended to the end on this command, and they will be

automatically added to the program.

/rename

<preset>

<files>

Load preset specified by a preset name or a full path and proceed with

Preview and Rename actions. Upon successful Preview and Rename

operations, program will close automatically. Otherwise, graphical user

interface will become visible and an appropriate error message will be

displayed. Paths to files/folders can be appended to the end on this command,

and they will be automatically added to the program.

/enqueue

<files>

Add following files/folders to already running instance of the program. If no

running instance is found - launch a new one.

/list <files> Load a list of files/folders from the following list files.

/uninstall
Remove all manually turned on associations with the program, e.g. presets

association. For advanced users only!

Examples

• "ReNamer.exe" /enqueue "C:\Folder" "C:\Pictures*.jpg"

 23

o This command will add to already running instance of the program contents of

folder "C:\Folder" (depending on the default settings) and all *.JPG files from

folder "C:\Pictures".

• "ReNamer.exe" /preset "MyRules" "C:\Folder"

o This command will launch a new instance of the program, will load the preset

with the name "MyRules", and will add contents of folder "C:\Folder"

(depending on the default settings).

• "ReNamer.exe" /rename "MyRules" "C:\Folder"

o This command will launch a new instance of the program, will load the preset

with the name "MyRules", will add contents of folder "C:\Folder" (depending

on the default settings), and will execute Preview and Rename operations

(program will close upon successful completion of all operations).

• "ReNamer.exe" /list "List1.txt" "List2.txt"

o Where "List1.txt" and "List2.txt" are lists of files (one per line), with absolute

or relative paths (relative to the list file). The contained paths will be loaded

into ReNamer.

